Epic recently announced an unexpected collaboration with Tesla, the electric car company. Starting Tuesday, July 23, players will be able to drive a Cybertruck…
rocket
-
-
LinuxNetwork SecurityNewsOperating SystemPC & LaptopServerSoftware
Sabrent Rocket Nano 2242 review: The perfect SSD for finicky Thinkpads
At a glance Expert’s Rating Pros Small 2242 form factor fits Lenovo Legion Go or Thinkpad perfectly without adapter Good performance Fits 2280 M.2…
-
住宅ローン業界で成功するためには、効率性と正確性が最も重要だ。また、選択肢を広げておくことも重要だ。それが、Rocket Mortgageが機械学習やAI技術を積極的に導入してきた理由であり、ブライアン・ウッドリングCIOが「人間がループに入る」AI戦略を強調する理由である。 デトロイトに本社を置く消費者ローン運営企業は、10年以上にわたって機械学習とAIを導入しており、生成AI機能を市場にリリースしている数少ないパイオニアのひとつである。 ウッドリング氏は、「我々は現在、約1年前から複数の生成AIのケースを製品化しています」と述べ、例えば、同社が開発中の1つの生成AIチャットボットは、話すだけでなく、聞いて理解するように設計されていると指摘する。 Rocketが開発した別の生成AIアシスタントは、応募者の雇用主名を分析し、さまざまな名前で入力される可能性のある雇用主が同じものであると理解されるようにし、意思決定プロセスを大幅にスピードアップする。例えば、ほとんどの人はグーグルとアルファベットが同じ雇用主であることを知っている。このような人間の知識を使って生成AIアシスタントを訓練し、雇用主の身元を確認することは、親会社名のデータベースを構築して子会社やより一般的な会社の身元と照合するよりもはるかに効率的だとウッドリング氏は言う。 生成AIをいち早く実用化したRocket Mortgageは、投資家や規制当局に安全かつ責任ある方法で技術を導入していることを納得させるため、適切なガードレールとガイドラインを整備した上でそれを行った、とウッドリング氏は補足する。同社は現在、いくつかのビジネスプロセスを自家製のコードとAIで完全に自動化している。しかし、住宅ローンを組むかどうかといった決定を伴う生成AIのアプリケーションでは、常に「ループの中に人間がいる」とウッドリングは言う。 「生成AIを搭載したコパイロットやシステム(私たちが構築している多くのもの)では、インターネットに何年も投稿されたものをすべて知っている生成AIモデルと人間の判断が組み合わさることで、判断の精度が10%から15%向上することが分かっています。 生成AIのプロセスの意思決定と結果を承認するために人間の意見を取り入れることが、初期の生成AIの成功に不可欠な原動力であることが証明されつつある、というのがアナリストの意見だ。 IDCのワールドワイドAI・オートメーションマーケットリサーチ・アドバイザリーサービス担当グループバイスプレジデントであるリトゥ・ジョティ氏は、「生成AIは、さまざまなデータポイントを結びつけ、数秒で洞察をまとめ、合成する能力を持つバーチャルナレッジワーカーになりつつあり、より付加価値の高いタスクに集中できるようになっている」と語る。 「AIはローンの引き受けのようなプロセスを変革しつつあるが、真に効果的で実行可能なテクノロジーとなるためには、100%の精度が要求されるため、人間によるイン・ザ・ループが不可欠である。」 モデルにとらわれないAIを目指す 1,000人以上のエンジニアと600人以上のデータサイエンティストが協力し合い、Rocketのコードのほとんどを社内で構築している。 ウッドリングがプロダクト・エンジニアリング・チームを率いるCTOとして2017年に入社したとき、彼の最優先事項の1つは、Rocketのクラウド導入を加速させることだった。 「入社後、6ヶ月目に最初にやったことのひとつは、今後、新しいテクノロジーはすべてクラウドで構築すると宣言したことです」と彼は言う。 現在、Rocketのワークロードの60%から70%はクラウド上で稼働しており、そのうち95%以上はAWSで稼働している。残りはオンプレミスだ。 ウッドリングによると、同社初の機械学習モデルは10年以上前に開発され、マーケティング、リード生成パターン認識、ローン組成プロセスなどのタスクを自動化した。 しかし、ここ5、6年で、RocketにおけるAIの利用は「一気に加速した」とウッドリングは言う。例えば、ローン申込者の収入確認のおよそ3分の2は、現在100%機械学習モデルとAI技術によって行われていると彼は言う。 「私たちのビジネスのほぼすべての側面が、今やMLやAI、タスクの自動化、パターン認識、データ分析によって触れられています」とウッドリング氏は言い、意思決定が必要な場合は常に、人間がクロージング・プロセスの一部であることを繰り返し語った。 Rocketのエンジニアとデータサイエンティストは、AWS BedrockとAnthropic AIテクノロジーを使って生成AIモデルを開発している。主にAWSのショップであるにもかかわらず、Rocketは生成AIプラットフォームに対してモデルにとらわれないアプローチをとっている。PayPalとMicrosoftで経験を積んだ経験豊富な技術幹部であるRocket CompaniesのCEO、Varun Krishnaは、AWS、Anthropic、OpenAI、Google、Mistralを含むすべてのAI基盤モデルプロバイダと直接関係を築いているとウッドリング氏は言う。…
-
Back in the 19th century, a fella by the name of Friedrich Nietzsche said, while rambling around in Central Europe, that – I’m paraphrasing…
-
LinuxNetwork SecurityNewsOperating SystemPC & LaptopServerSoftware
Sabrent Rocket Nano V2 portable SSD review: 4TB of fast, tiny storage
At a glance Expert’s Rating Pros Extremely small profile Shock-absorbing silicone jacket Top-flight packaging Good overall performance Cons A tad behind the 20Gbps curve…
-
LinuxNetwork SecurityNewsOperating SystemPC & LaptopServerSoftware
Rocket Mortgage lays foundation for generative AI success
Analysts agree that incorporating human input to sign off on decisions and outcomes of generative AI processes is proving to be an essential driver…